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1 Introduction

In this paper we will investigate the approximate solution of the one-dimensional time
independent Schrödiner equation. The radial Schrödinger equation can be written as
the following boundary value problem:

p′′(r) = [l(l + 1)/r2 + V (r) − k2]p(r). (1)

Astronomy, astrophysics, quantum mechanics, quantum chemistry, celestial
mechanics, electronics physical chemistry and chemical physics are some of the many
scientific areas of applied sciences in which the mathematical models of their problems
can be expressed with the above mentioned boundary value problem (see for example
[1–4])

For the above boundary value problem (1) there are the following notations:

– The function W (r) = l(l + 1)/r2 + V (r) is called the effective potential. This
satisfies W (x) → 0 as x → ∞,

– The quantity k2 is a real number denoting the energy,
– The quantity l is a given integer representing the angular momentum,
– V is a given function which denotes the potential.

The boundary conditions are:

p(0) = 0, (2)

and a second boundary condition, for large values of r , determined by physical con-
siderations.

In this paper we will study a family of multiderivative high algebraic order explicit
methods. The idea is a procedure in order to maximize the efficiency of a numerical
scheme for the approximate solution of the Schrödinger equation and related prob-
lems with periodic or oscillating solutions. More specifically we will develop three
methods of this family. In the first the phase-lag and its first derivative are vanished. In
the second the phase-lag and its first and second derivatives are vanished and finally in
the third scheme the phase-lag and its first, second and third derivatives are vanished.

We note here that any problem with periodic or oscillating solutions or any problem
with solution which contains the functions cos and sin or any problem with solution
that is a combination of them can be solved effectively using numerical methods which
have been produced the methodology mentioned above.

Therefore, the aim of this paper is the calculation of the coefficients of the new
obtained family of multiderivative high algebraic order explicit methods in order:

– to have the highest possible algebraic order
– to have the phase-lag vanished
– to have the derivative of the phase-lag (first, first and second or first, second and

third respectively) vanished as well

The methodology for the development of the new proposed methods is based on
the calculation of the phase-lag and its derivatives. For this purpose we use the direct
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formula for the determination of the phase-lag for 2m-method (see [26] and [29]).
Therefore, the procedure of vanishing of the phase lag and its first, second and third
derivatives is based on the previously mentioned direct formula.

In the present paper (Part I) the new family of multiderivative high algebraic order
explicit methods are developed and studied theoretically. More specifically, the inves-
tigation of the effectiveness of the new proposed schemes will be based on the inves-
tigation of the local truncation error and of the stability analysis of the new proposed
methods.

In a future paper (Part II) we will present the implementation of the new obtained
formulae (using several new schemes for the computation of the first derivative) and
we will also apply the obtained methods to the resonance problem of the radial time
independent Schrödinger equation.

The format of the paper is given below:

– In Sect. 2 a bibliography relevant on the subject of the paper is presented
– The phase-lag analysis of symmetric 2k-methods is described in Sect. 3.
– The new family of multiderivative high algebraic order explicit four-step methods

is constructed in Sect. 4.
– A comparative error analysis is studied in Sect. 5.
– The stability properties of the new developed methods are presented in Sect. 6.
– Finally, in Sect. 7 we present remarks and conclusions.

2 Bibliography relevant on the subject of the paper

In order to obtain efficient, fast and reliable algorithms for the approximate solution
of the radial Schrödinger equation and related problems, much research has been
done the last decades (see for example [5–101]). In the following, we mention some
bibliography:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge-
Kutta and Runge-Kutta Nyström type have been obtained in [5–11].

– In [12–17] exponentially and trigonometrically fitted Runge-Kutta and Runge-
Kutta Nyström methods are constructed.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [23–47].

– Symplectic integrators are investigated in [48–72].
– Exponentially and trigonometrically multistep methods have been produced in

[73–92].
– Nonlinear methods have been studied in [93] and [94]
– Review papers have been presented in [95–99]
– Special issues and Symposia in International Conferences have been developed

on this subject (see [102–108])

Recently several multiderivative methods has been constructed (see [109–118]).
The most of them are implicit and P-stable. However, we know that P-stability is a
very useful property for stiff oscillatory problems and no for problems of the form of
the radial Schrödinger equation and related problems.
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3 Basic theory on the phase-lag analysis of symmetric multistep methods

We consider a multistep method of m steps which can be applied over the equally
spaced intervals {xi }m

i=0 ∈ [a, b] and h = |xi+1 − xi |, i = 0(1)m − 1, for the approx-
imate solution of the initial value problem

q ′′ = f (x, q) (3)

In the case of symmetric multistep methods, the following relations are hold:

ai = ak−i , bi = bk−i , i = 0(1)
m

2
(4)

Applying a symmetric 2m-step method, that is for i = −m(1)m, to the scalar test
equation

q ′′ = −ω2 q (5)

a difference equation of the form

Am(v)qn+m + · · · + A1(v)qn+1 + A0(v)qn + A1(v)qn−1 + · · · + Am(v)qn−m = 0

(6)

is obtained, where v = ω h, h is the step length and A0(v), A1(v), . . . , Am(v) are
polynomials of v = ω h.

The characteristic equation associated with (6) is given by:

Am(v) λm + · · · + A1(v) λ + A0(v) + A1(v) λ−1 + · · · + Am(v) λ−m = 0 (7)

Theorem 1 [26] and [29] The symmetric 2m-step method with characteristic equation
given by (7) has phase-lag order p and phase-lag constant c given by:

−cv p + 2 + O
(
vq + 4

)

= 2Am (v) cos (mv) + · · · + 2A j (v) cos ( jv) + · · · + A0 (v)

2m2 Am (v) + · · · + 2 j2 A j (v) + · · · + 2A1 (v)
(8)

The formula mentioned in the above theorem is a direct method for the computation
of the phase-lag of any symmetric 2m- step method.
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4 Development of the new family of multiderivative methods

Consider the following family of multiderivative eighth algebraic order explicit four-
step methods for the numerical solution of problems of the form q ′′ = f (x, q):

qn+2 + a1 qn+1 + a0 qn + a1 qn−1 + qn−2

= h2
[
b1 ( fn+1 + fn−1) + b0 fn

]
+ h4

[
c1 (gn+1 + gn−1) + c0 gn

]
(9)

In the above general form :

– the coefficient b0, b1, c0, c1, a0 and a1 are free parameters,
– h is the step size of the integration,
– n is the number of steps,
– qn±i is the approximation of the solution on the point xn±i , i = 0(1)2
– fn±i = q ′′(xn±i ), i = 0(1)2
– gn±i = q(4)(xn±i ), i = 0(1)2
– xi = x0 + i h and
– x0 is the initial value point.

4.1 First method of the family

Considering that:

a1 = −2 a0 = 2

b1 = 1 − 1

2
b0

c1 = 1

12
− 1

2
c0 + 1

4
b0 (10)

and applying the method (9) to the scalar test equation (5) we have the difference
equation (6) with m = 2 and A j (v) , j = 0(1)2 given by:

A2 (v) = 1

A1 (v) = −2 + v2
(

1 − 1

2
b0

)
− v4

(
1

12
− 1

2
c0 + 1

4
b0

)

A0 (v) = 2 + v2b0 − v4c0 (11)

where v = ω h
Demanding now the above mentioned method with the coefficients (10) to have its

phase-lag vanished and using the formulae (8) (for m = 2) and (11), the following
equation is obtained:

Phase − Lag = − T0

−24 − 12 v2 + 6 v2b0 + v4 − 6 v4c0 + 3 v4b0
= 0 (12)
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where

T0 = 24 (cos (v))2 − 24 cos (v) + 12 cos (v) v2

− 6 cos (v) v2b0 − cos (v) v4 + 6 cos (v) v4c0

− 3 cos (v) v4b0 + 6 v2b0 − 6 v4c0

Requiring now the method to have the first derivative of the phase-lag vanished as
well, the following equation is obtained:

First Derivative of the Phase − Lag

= T1(− 24 − 12 v2 + 6 v2b0 + v4 − 6 v4c0 + 3 v4b0
)2 = 0 (13)

where

T1 = 96 (cos (v))2 v3 − 576 v (cos (v))2

+ 12 v5b0 + 36 v5b0
2 − 144 v5c0 + 288 vb0 − 576 v3c0 + 12 sin (v) v8c0

− 144 sin (v) v6c0 − 36 sin (v) v4b0
2 − 36 sin (v) v6b0

2

− 6 sin (v) v8b0 − 36 sin (v) v8c0
2 − 9 sin (v) v8b0

2

− 576 (cos (v))2 v3c0 + 288 (cos (v))2 v3b0

+ 288 v (cos (v))2 b0 + 48 cos (v) sin (v) v4

− 576 cos (v) vb0 + 1152 cos (v) v3c0 − 576 cos (v) v3b0

− 576 cos (v) sin (v) v2 + 60 sin (v) v6b0

+ 144 sin (v) v4b0 + 576 sin (v) + 1152 cos (v) v

− 192 cos (v) v3 − 1152 cos (v) sin (v) + 24 sin (v) v6

− sin (v) v8 − 144 sin (v) v4 + 72 sin (v) v6b0c0

+ 36 sin (v) v8c0b0 + 288 cos (v) sin (v) v2b0

− 288 cos (v) sin (v) v4c0 + 144 cos (v) sin (v) v4b0

Demanding now the coefficients of the new proposed method to satisfy the Eqs. (12–
13), the following coefficients of the new developed method are produced:

b0 = T2

D2

c0 = T3

D3
(14)

where:

T2 = 12 sin (v) v2 + 24 v2 sin (2 v) − 3 v5

− v5 cos (2 v) + 36 v3 − 18 v − 6 v cos (4 v)
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+24 v cos (2 v) + 12 v3 cos (2 v) + 48 cos (v) v3

−4 v5 cos (v) + 12 v2 sin (3 v)

+24 sin (4 v) − 48 sin (2 v)

D2 = 9 v5 + 3 v5 cos (2 v) + 12 v5 cos (v)

+6 v2 sin (3 v) − 18 sin (v) v2

T3 = −12 + 17 cos (v) v4 + 3 v3 sin (4 v) − 6 v3 sin (2 v)

+v5 sin (2 v) − 12 v sin (3 v) + 36 v sin (v)

+12 v4 cos (2 v) + 6 v3 sin (3 v) − 18 v3 sin (v)

+7 v4 cos (3 v) + 6 v sin (4 v) − 12 v sin (2 v)

+12 v2 cos (4 v) − 24 cos (3 v) − 12 v2 + 12 v4

+24 cos (v) + 2 sin (v) v5 + 12 cos (4 v)

D3 = −3 v7 sin (2 v) − 6 cos (v) v4 + 6 v4 cos (3 v)

−6 sin (v) v7 + 12 v4 − 12 v4 cos (2 v)

For some values of |ω| the formulae given by (14) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

b0 = 73

63
− 6149

39690
v2 + 407821

55010340
v4 − 356245907

1802138738400
v6

+ 732677171

227069481038400
v8 − 1807959364469

53502111122267808000
v10

+ 29775965158673

128084054026709132352000
v12

− 44482808159047

40153431673827666754560000
v14

+ 1170845203904512391

267522318833740177407589509120000
v16

− 210549800202926021

13483124869220504941342511259648000
v18 + · · ·

c0 = 1783

3780
− 6149

95256
v2 + 45043357

13202481600
v4 − 2041915597

21625664860800
v6

+ 42873654301

27248337724608000
v8 − 425373820477

25681013338688547840
v10

+ 1429904421004901

12296069186564076705792000
v12

− 51821034133265101

100704806637959788220436480000
v14

+ 97639044339445475527

32102678260048821288910741094400000
v16

+ 57673894105111695479

4044937460766151482402753377894400000
v18 + · · · (15)
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Fig. 1 Behavior of the coefficients of the new proposed method given by (14) for several values of v = ω h

The behavior of the coefficients is given in the following Fig. 1.
The local truncation error of the new proposed method (mentioned as N M I ) is

given by:

LTENMI = − 614 h10

38102400

(
q(10)

n + 2 ω2q(8)
n + ω4q(6)

n

)
+ O

(
h12

)
(16)

4.2 Second method of the family

Considering now that:

a1 = −2 a0 = 2

b1 = 1 − 1

2
b0 (17)

and applying the method (9) to the scalar test equation (5) we have the difference
equation (6) with m = 2 and A j (v) , j = 0(1)2 given by:

A2 (v) = 1

A1 (v) = −2 + v2
(

1 − 1

2
b0

)
− v4c1

A0 (v) = 2 + v2b0 − v4c0 (18)

where v = ω h
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We demand now the method (9) with coefficients (17) to have its phase-lag vanished.
Using the formulae (8) (for m = 2) and (18), the following equation is obtained:

Phase − Lag = − T4

−4 − 2 v2 + v2b0 + 2 v4c1
= 0 (19)

where

T4 = 4 (cos (v))2 − 4 cos (v) + 2 v2 cos (v)

− cos (v) v2b0 − 2 cos (v) v4c1 + v2b0 − v4c0

We require now the method (9) with coefficients (17 to have the first derivative of the
phase-lag vanished as well. The following equation is hold:

First Derivative of the Phase − Lag = T5(−4 − 2 v2 + v2b0 + 2 v4c1
)2 = 0 (20)

where

T5 = 8 cos (v) sin (v) v2b0 + 16 cos (v) sin (v) v4c1

−4 sin (v) v6b0c1 + 8 vb0 − 16 v3c0 − 32 cos (v) sin (v)

+32 cos (v) v − 16 v (cos (v))2 − 4 v5c0 − 4 sin (v) v4

+16 sin (v) − 16 cos (v) vb0 − 64 cos (v) v3c1 + 8 v (cos (v))2 b0

+32 (cos (v))2 v3c1 + 4 v5b0c1 + 2 v5c0b0

−16 cos (v) sin (v) v2 + 4 sin (v) v4b0 + 8 sin (v) v6c1

− sin (v) v4b0
2 − 4 sin (v) v8c1

2

Demanding now for the method (9) with coefficients (17) the second derivative of the
phase-lag to be vanished as well, the following equation is obtained:

Second Derivative of the Phase − Lag = T6(−4 − 2 v2 + v2b0 + 2 v4c1
)3 = 0 (21)

where

T6 = −128 + 512 cos (v) sin (v) v3c1 − 32 cos (v) sin (v) b0
2v3

−12 cos (v) v10b0c1
2 − 6 cos (v) v8b0

2c1 − 192 cos (v) sin (v) b0v5c1

+128 sin (v) v3 + 16 cos (v) v4 + 160 cos (v) v2 + 288 cos (v) v4b0c1

+16 v6 cos (v) b0c1 − 144 v4 (cos (v))2 b0c1 − 192 cos (v)

+160 v6c0c1 + 192 v2c0 + 320 (cos (v))2 − 32 b0 − 12 cos (v) v6b0

+64 (cos (v))2 v8c1
2−128 cos (v) sin (v) v3

−64 (cos (v))2 v4b0+4v4 cos (v) b0
2+2v6c0b0

2+32v4b0+64v6c1 − 8v4b0
2
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−32 v8c1
2 − 32 v4 + 6 cos (v) v6b0

2 − 24 cos (v) v8c1

+128 cos (v) sin (v) v3b0 + 384 cos (v) sin (v) v5c1

+128 v cos (v) sin (v) b0 + 8 v6c0 + 192 sin (v) v5b0c1

−40 v6b0c1 − 128 v2 + 24 cos (v) v10c1
2 − 128 sin (v) v3b0

−384 sin (v) v5c1 − 192 v4b0c1 − 128 sin (v) vb0

−512 sin (v) v3c1 + 768 cos (v) v2c1 + 4 v6b0
2c1 − 24 v8b0c1

2

−8 v6c0b0 − 12 v8c0b0c1 − cos (v) v6b0
3 + 32 sin (v) v3b0

2

−8 cos (v) v12c1
3 + 256 sin (v) v7c1

2 − 384 (cos (v))2 v2c1

−256 cos (v) sin (v) v7c1
2 + 64 (cos (v))2 v6b0c1

+24 cos (v) v8b0c1 + 48 cos (v) v2b0
2 + 640 cos (v) v6c1

2

+24 v8c0c1 − 32 v6 cos (v) c1 − 32 v2 (cos (v))2 b0

−16 v4 cos (v) b0 + 16 (cos (v))2 v4b0
2

−128 (cos (v))2 v6c1 + 32 v4 (cos (v))2 c1

−320 v6 (cos (v))2 c1
2 − 24 v2 (cos (v))2 b0

2

+160 (cos (v))2 v2 + 112 v2b0 + 128 v4c1 + 48 v4c0 − 24 v2b0
2

+16 v8 cos (v) c1
2 − 256 v cos (v) sin (v) − 544 cos (v) v4c1

−176 cos (v) v2b0 + 64 (cos (v))2 v4 + 8 cos (v) v6

+256 sin (v) v + 64 cos (v) b0 − 32 (cos (v))2 b0 − 24 v4c0b0

Demanding now the coefficients of the new proposed method to satisfy the Eqs. (19–
21), the following coefficients of the new developed method are produced:

b0 = T7

D7

c0 = T8

D8

c1 = T9

D8
(22)

where:

T7 = −6 v3 + 2 v3 cos (2 v) − 6 v2 sin (2 v) + 2 v2 sin (3 v)

−6 sin (v) v2 + 24 v − 28 v cos (v) + 12 v cos (3 v)

−8 v cos (2 v) + 40 sin (2 v) − 20 sin (v) − 20 sin (3 v)

D7 = −3 v3 + v3 cos (2 v) + 2 v3 cos (v) − 3 v2 sin (2 v) + 6 sin (v) v2

T8 = −56 − 30 cos (v) v2 + 32 cos (3 v) + 6 v2 cos (3 v) + v2 cos (4 v)

−4 v2 cos (2 v) − 2 v sin (2 v) + 2 v3 sin (2 v) + 6 v sin (3 v)

−5 v sin (4 v) − 8 cos (4 v) + 2 v3 sin (3 v) + 2 v4 cos (2 v)

+27 v2 − 6 v4 + 6 sin (v) v − 6 sin (v) v3 − 64 cos (2 v) + 96 cos (v)
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D8 = −3 v6 + v6 cos (2 v) + 2 cos (v) v6 − 3 v5 sin (2 v) + 6 sin (v) v5

T9 = 2 cos (v) v2 − 32 + 56 cos (v) + 2 v4 cos (v)

−34 v sin (2 v) − 6 v2 + 10 v2 cos (2 v) − 32 cos (2 v)

+ sin (v) v3 − v3 sin (3 v) + 12 v sin (3 v)

+32 sin (v) v + 8 cos (3 v) − 6 v2 cos (3 v)

For some values of |ω| the formulae given by (14) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

b0 = 73

63
− 6149

26460
v2 + 218831

12224520
v4 − 22640473

44497252800
v6

+ 8949037

1121330770560
v8 − 31318112381

440346593598912000
v10

+ 15652468501

23426438779462118400
v12

+ 6303015333211

2558167114717263329280000
v14

+ 39685750300249

250920773178328985879347200
v16

+ 9867027018400309

2283379035922793771502059520000
v18 + · · ·

c0 = 1783

3780
− 6149

63504
v2 + 12361969

1466942400
v4 − 163198697

400475275200
v6

+ 4360326853

336399231168000
v8 − 1034989297373

3522772748791296000
v10

+ 1663920138763

330726194533582848000
v12

− 1399007428451

20930458211323063603200
v14

+ 131090624936954117

181220558406570934246195200000
v16

− 168587575500807313

27400548431073525258024714240000
v18 + · · ·

c1 = 1037

7560
− 6149

635040
v2 + 767891

2933884800
v4 − 18821

4550855400
v6

+ 23366087

672798462336000
v8 − 525200129

1409109099516518400
v10

− 4784004499

2248938122828363366400
v12

− 939656429263

9209401612982147985408000
v14
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Fig. 2 Behavior of the coefficients of the new proposed method given by (22) for several values of v = ω h

− 993383534961577

362441116813141868492390400000
v16

− 4228645637016869

54801096862147050516049428480000
v18 + · · · (23)

The behavior of the coefficients is given in the following Fig. 2.
The local truncation error of the new proposed method (mentioned as N M I I ) is

given by:

LTEN M I I = − 614 h10

38102400

(
q(10)

n + 3 ω2q(8)
n + 3 ω4q(6)

n + ω6q(4)
n

)
+ O

(
h12

)

(24)
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4.3 Third method of the family

Considering now that:

a1 = −2 a0 = 2 (25)

and applying the method (9) to the scalar test equation (5) we have the difference
equation (6) with m = 2 and A j (v) , j = 0(1)2 given by:

A2 (v) = 1

A1 (v) = −2 + v2b1 − v4c1

A0 (v) = 2 + v2b0 − v4c0 (26)

where v = ω h
We demand now the method (9) with coefficients (25) to have its phase-lag van-

ished. Using the formulae (8) (for m = 2) and (18), the following equation is hold:

Phase − Lag = −1

2

T10

−2 − v2b1 + v4c1
= 0 (27)

where

T10 = 4 (cos (v))2 − 4 cos (v) + 2 cos (v) v2b1 − 2 cos (v) v4c1 + v2b0 − v4c0

We require now the method (9) with coefficients (25 to have the first derivative of the
phase-lag vanished as well. The following equation is obtained:

First Derivative of the Phase − Lag = T11(−2 − v2b1 + v4c1
)2 = 0 (28)

where

T11 = −4 cos (v) sin (v) v2b1 + 4 cos (v) sin (v) v4c1 + 2 sin (v) v6b1c1

+2 v b0 − 4 v3c0 − 8 cos (v) sin (v) + 8 cos (v) v b1 − 16 cos (v) v3c1

− sin (v) v4b1
2 − sin (v) v8c1

2 + v5b0c1 − v5c0b1

−4 v (cos (v))2 b1 + 8 (cos (v))2 v3c1 + 4 sin (v)

Demanding now for the method (9) with coefficients (17 the second derivative of the
phase-lag to be vanished as well, the following equation is obtained:

Second Derivative of the Phase − Lag = T12(−2 − v2b1 + v4c1
)3 = 0 (29)
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where

T12 = −16 + 4 cos (v) v4c1 − 16 cos (v) b1 − 12 v2 (cos (v))2 b1
2

−40 v6 (cos (v))2 c1
2 + 32 (cos (v))2 v2b1 − 32 (cos (v))2 v4c1

+ 8 (cos (v))2 v4b1
2 + 2 cos (v) v4b1

2 + 8 (cos (v))2 v8c1
2

+2 cos (v) v8c1
2 + 16 sin (v) v3b1

2 + cos (v) v6b1
3 − cos (v) v12c1

3

+32 sin (v) v7c1
2 + 24 cos (v) v2b1

2 − 48 (cos (v))2 v2c1 + 80 cos (v) v6c1
2

−3 b0v8c1
2 + v6c0b1

2 + 48 cos (v) sin (v) b1v5c1 + 20 v6c0c1 + 32 sin (v) vb1

+ 8v6b1c1 − 64 sin (v) v3c1 + 96 cos (v) v2c1 + 24 v2c0 − 4 cos (v) v2b1

−72 cos (v) v4b1c1 + 36 v4 (cos (v))2 b1c1 − 16 (cos (v))2 v6b1c1

−4 cos (v) v6b1c1 − 3 cos (v) v8b1
2c1 + 3 cos (v) v10b1c1

2

−48 sin (v) v5b1c1 + 64 cos (v) sin (v) v3c1 − 16 cos (v) sin (v) b1
2v3

−32 cos (v) sin (v) v7c1
2 − 32v cos (v) sin (v) b1 + 8 (cos (v))2 b1 − 8 cos (v)

+32 (cos (v))2 − 16 v2b1 + 16 v4c1 − 4 b0 + 6 v2b0b1 + 6 v4c0b1

−24 v4b0c1 − 4 v4b1
2 − 4 v8c1

2 − b0v6b1c1 + 3 v8c0b1c1

Finally, we require for the new produced method the third derivative of the phase-lag
to be vanished as well. Therefore, the following equation is obtained:

Third Derivative of the Phase − Lag = − T13(−2 − v2b1 + v4c1
)4 = 0 (30)

where

T13 = −288 v5b1c1 − 12 b0v11c1
3 + 96 cos (v) vb1 − 192 cos (v) v3c1

−96 cos (v) sin (v) b1 − 576 sin (v) v2c1 + 384 cos (v) vc1

+192 cos (v) v7c1
2 + 288 sin (v) v6b1

2c1 + 96 cos (v) v3b1
2

+ 48 vb0b1 − 240 v3b0c1 + 480 v5c0c1 − 48 v3c0b1+12 v9c0b1
2c1

+12 v11c0b1c1
2 − 288 cos (v) v5b1c1 − 4 sin (v) v6b1

3 + 4 sin (v) v12c1
3

− sin (v) v8b1
4 + 24 cos (v) v5b1

3 − 192 v3 (cos (v))2 b1
2

+96 (cos (v))2 v11c1
3 − 384 v7 (cos (v))2 c1

2

−96 cos (v) v7b1
2c1 + 120 cos (v) v9b1c1

2

+576 cos (v) sin (v) v2c1 + 96 sin (v) v4b1c1

−1152 cos (v) v3b1c1 + 96 cos (v) sin (v) b1
2v2

+192 cos (v) sin (v) v6c1
2 − 96 sin (v) v2b1

2

−192 sin (v) v6c1
2 + 192 cos (v) vb1

2 + 1920 cos (v) v5c1
2

−72 sin (v) v4b1
3 − 96 v (cos (v))2 b1

2

−192 vc1 (cos (v))2 − 16 sin (v) v4c1 + 16 sin (v) v2b1

−192 v (cos (v))2 b1 + 384 (cos (v))2 v3c1
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− sin (v) v16c1
4 − 48 cos (v) v11c1

3 − 48 (cos (v))2 b1
3v5

+96 v5b0b1c1 + 96 v7c0b1c1 − 12 b0b1v9c1
2 + 96 v3b1

2 + 192 v7c1
2

+24 b1
3v5 − 48 v11c1

3 + 96 vb1 − 192 v3c1 + 16 sin (v)

−96 cos (v) sin (v) b1v4c1 + 192 cos (v) sin (v) v6b1c1

+48 cos (v) sin (v) v8b1
2c1 − 48 cos (v) sin (v) v10b1c1

2

−288 v6 cos (v) sin (v) b1
2c1 + 456 v8 cos (v) sin (v) b1c1

2

−456 sin (v) v8b1c1
2 + 384 cos (v) v5b1

2c1 − 576 cos (v) v7b1c1
2

+192 (cos (v))2 b1
2v7c1 − 240 (cos (v))2 b1v9c1

2

+240 sin (v) v10c1
3 + 480 cos (v) v9c1

3 + 48 v3 (cos (v))2 b1
3

−240 v9 (cos (v))2 c1
3 + 96 vc0 − 128 cos (v) sin (v)

−960 (cos (v))2 v5c1
2 + 576 (cos (v))2 b1v3c1

+72 v4 cos (v) sin (v) b1
3 − 240 v10 cos (v) sin (v) c1

3

−192 v5 (cos (v))2 b1
2c1 + 288 v7 (cos (v))2 b1c1

2

+192 cos (v) sin (v) v4c1 − 192 cos (v) sin (v) v2b1

−96 cos (v) v3b1
3 + 96 sin (v) b1 + 576 v5 (cos (v))2 b1c1

−96 cos (v) sin (v) v4b1
2 − 96 cos (v) sin (v) v8c1

2

−16 cos (v) sin (v) v6b1
3 + 16 cos (v) sin (v) v12c1

3

+12 sin (v) v8b1
2c1 − 12 sin (v) v10b1c1

2 + 4 sin (v) v10b1
3c1

−6 sin (v) v12b1
2c1

2 + 4 sin (v) v14b1c1
3

−24 v3b0b1
2 − 240 v7b0c1

2 + 120 v9c0c1
2 − 96 b1

2v7c1 + 120 b1v9c1
2

Demanding now the coefficients of the new proposed method to satisfy the Eqs. (27–
30), the following coefficients of the new developed method are produced:

b0 = T14

D14

b1 = T15

D14

c0 = T16

D16

c1 = T17

D17
(31)

where:

T14 = 120 − 176 v2 − 120 cos (v) + 60 cos (5 v) + 60 cos (3 v) + 80 v2 cos (4 v)

−480 v2 cos (2 v) + 314 v2 cos (3 v) − 192 v sin (4 v)

−118 v2 cos (5 v) + 138 v sin (5 v) − 42 v sin (3 v)

+v5 sin (5 v) − 13 v5 sin (3 v) + 8 v3 sin (4 v)

−89 v4 cos (3 v) + 192 v sin (2 v) − 176 v3 sin (2 v) − 50 v3 sin (5 v)
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+262 v3 sin (3 v) + 11 v4 cos (5 v) − 180 sin (v) v

+72 sin (v) v3 + 380 cos (v) v2 − 18 cos (v) v4

−14 sin (v) v5 − 120 cos (4 v)

D14 = −11 cos (v) v6 + 9 sin (v) v5 − v6 cos (3 v)

+v5 sin (3 v) + 3 cos (v) v4 − 9 sin (v) v3

−3 v4 cos (3 v) + 3 v3 sin (3 v)

T15 = −204 sin (v) v + 52 sin (v) v3 + 284 cos (v) v2

−44 cos (v) v4 + 9 v4 cos (4 v) + 52 v4 cos (2 v)

+120 v sin (2 v) − 122 v3 sin (2 v) + 20 v3 sin (3 v)

−4 v4 cos (3 v) − 3 v3 sin (4 v) + 52 v2 cos (4 v)

+2 v5 sin (4 v) − 240 v2 cos (2 v) + 4 v2 cos (3 v)

−108 v sin (4 v) + 120 cos (3 v) + 132 v sin (3 v) − 120 cos (v)

−100 v2 + 35 v4 − 60 cos (4 v) + 60 + 8 v5 sin (2 v)

T16 = −24 − 13 v5 sin (3 v) + 6 v4 cos (5 v) − 78 sin (v) v

−10 sin (v) v3 + 2 cos (v) v2 + 28 cos (v) v4

−288 v2 cos (2 v) − 15 v3 sin (5 v) + 215 v3 sin (3 v)

−14 sin (v) v5 − 87 v sin (3 v) − 13 v2 cos (5 v)

−9 v sin (5 v) + v5 sin (5 v) − 12 cos (5 v) + 24 cos (v)

+32 v2 cos (4 v) + 192 v sin (2 v) + 8 v3 sin (4 v)

−82 v4 cos (3 v) − 12 cos (3 v) + 64 v2 + 203 v2 cos (3 v)

+24 cos (4 v) − 176 v3 sin (2 v)

D16 = −11 v8 cos (v) + 9 v7 sin (v) − v8 cos (3 v)

+v7 sin (3 v) + 3 cos (v) v6 − 9 sin (v) v5

−3 v6 cos (3 v) + 3 v5 sin (3 v)

T17 = −2 v4 sin (3 v) − 6 sin (v) v4 + 10 v3 + 2 v3 cos (2 v)

+26 v2 sin (3 v) + 2 v2 sin (v) − 6 v − 42 v cos (2 v)

−12 sin (3 v) − 12 sin (v) − 13 v3 cos (v) + 18 cos (v) v

−11 v3 cos (3 v) + 30 v cos (3 v) − 16 v2 sin (2 v) + 24 sin (2 v)

D17 = 5 v7 + v7 cos (2 v) − 3 v5 + 3 v5 cos (2 v)

For some values of |ω| the formulae given by (31) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

b0 = 73

63
− 6149

19845
v2 + 181033

5501034
v4 − 813877139

901069369200
v6

− 26603652419

181655584830720
v8 + 158586653896091

13375527780566952000
v10

− 119179903473797861

256168108053418264704000
v12

123



210 J Math Chem (2013) 51:194–226

+ 50497280493020337661

4196033609914991175851520000
v14

− 100776964897766105614901

535044637667480354815179018240000
v16

+ 646414400080111975225183

168539060865256311766781390745600000
v18 + · · ·

b1 = 53

126
+ 6149

39690
v2 − 181033

11002068
v4 + 813877139

1802138738400
v6

− 13560456191

1816555848307200
v8 + 165520447879

1671940972570869000
v10

+ 71204405959391

39410478162064348416000
v12

+ 1099388490275298539

8392067219829982351703040000
v14

+ 6110498090838379806803

1070089275334960709630358036480000
v16

+ 68896910412184210723097

337078121730512623533562781491200000
v18 + · · ·

c0 = 1783

3780
− 6149

47628
v2 + 103300271

6601240800
v4 − 587169761

540641621520
v6

+ 2474485186517

54496675449216000
v8 − 841049141726459

642025333467213696000
v10

+ 835855620562247381

30740172966410191764480000
v12

− 2591855344873053593

6294050414872486763777280000
v14

+ 198306812857690683345253

32102678260048821288910741094400000
v16

− 14683836037885912740487

2022468730383075741201376688947200000
v18 + · · ·

c1 = 1037

7560
− 6149

476280
v2 + 5319529

13202481600
v4 − 5990329

1081283243040
v6

+ 11915141983

108993350898432000
v8 + 2153559601337

1284050666934427392000
v10

+ 4935848837625259

61480345932820383528960000
v12

+ 26654638354794911

12588100829744973527554560000
v14

+ 1219160544823341864647

64205356520097642577821482188800000
v16

− 10180749592901438674091

4044937460766151482402753377894400000
v18 + · · · (32)
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Fig. 3 Behavior of the coefficients of the new proposed method given by (31) for several values of v = ω h

The behavior of the coefficients is given in the following Fig. 3.
The local truncation error of the new proposed method (mentioned as N M I I I ) is

given by:

LTEN M I I I = − 614 h10

38102400

(
q(10)

n + 4 ω2q(8)
n + 6 ω4q(6)

n + 4 ω6q(4)
n + ω8q(2)

n

)

+O
(

h12
)

(33)

5 Error analysis

In this section we will investigate the local truncation error of the following methods:
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5.1 Classical method (i.e. the method (9) with constant coefficients)

LTEC L = − 614 h10

38102400
q(10)

n + O
(

h12
)

(34)

5.2 An implicit P-stable multiderivative method (see Appendix A)

LTEW = 236 h10

297675

(
q(10)

n + ω2q(8)
n

)
+ O

(
h12

)
(35)

5.3 Method with vanished phase-lag and its first derivative (method (9) with
coefficients given by (14))

LTEM I = − 614 h10

38102400

(
q(10)

n + 2 ω2q(8)
n + ω4q(6)

n

)
+ O

(
h12

)
(36)

5.4 Method with vanished phase-lag and its first and second derivatives (method (9)
with coefficients given by (22))

LTEN M I I = − 614 h10

38102400

(
q(10)

n + 3 ω2q(8)
n + 3 ω4q(6)

n + ω6q(4)
n

)
+ O

(
h12

)

(37)

5.5 Method with vanished phase-lag and its first, second and third derivatives
(method (9) with coefficients given by (31))

LTEN M I I I = − 614 h10

38102400

(
q(10)

n + 4 ω2q(8)
n + 6 ω4q(6)

n + 4 ω6q(4)
n + ω8q(2)

n

)

+O
(

h12
)

(38)

The following procedure is applied :

– The one-dimensional time independent Schrödinger equation is of the form

q ′′(x) = f (x) q(x) (39)
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– Based on the paper of Ixaru and Rizea [73], the function f (x) can be written in
the form:

f (x) = g(x) + G (40)

where g(x) = V (x) − Vc = g, where Vc is the constant approximation of the
potential and G = ω2 = Vc − E .

– We express the derivatives q(i)
n , i = 2, 3, 4, . . ., which are terms of the local trun-

cation error formulae, in terms of the Eq. (40). The expressions are presented as
polynomials of G

– Finally, we substitute the expressions of the derivatives, produced in the previous
step, into the local truncation error formulae

Following the procedure mentioned above and the formulae:

q(2)
n = (V (x) − Vc + G) q(x)

q(4)
n =

(
d2

dx2 V (x)

)
q(x) + 2

(
d

dx
V (x)

) (
d

dx
q(x)

)

+ (V (x) − Vc + G)

(
d2

dx2 q(x)

)

q(6)
n =

(
d4

dx4 V (x)

)
q(x) + 4

(
d3

dx3 V (x)

) (
d

dx
q(x)

)

+3

(
d2

dx2 V (x)

) (
d2

dx2 q(x)

)
+ 4

(
d

dx
V (x)

)2

q(x) (41)

+6 (V (x) − Vc + G)

(
d

dx
V (x)

) (
d

dx
q(x)

)

+4 (V (x) − Vc + G) q(x)

(
d2

dx2 V (x)

)

+ (V (x) − Vc + G)2
(

d2

dx2 q(x)

)
. . .

we obtain the expressions of the Local Truncation Errors.
Considering now two cases in terms of the value of E :

– The Energy is close to the potential, i.e., G = Vc − E ≈ 0. Consequently, the
free terms of the polynomials in G are considered only. Thus, for these values of
G, the methods are of comparable accuracy. This is because the free terms of the
polynomials in G are the same for the cases of the classical method and of the
methods with vanished the phase-lag and its derivatives.

– G >> 0 or G << 0. Then |G| is a large number.

we obtain the following asymptotic expansions of the Local Truncation Errors:
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5.6 Classical eighth algebraic order multiderivative method (i.e. the method (9) with
constant coefficients)

LTEC L = − 614 h10

38102400

(
q (x) G5 + · · ·

)
+ O

(
h12

)
(42)

5.7 An implicit P-stable multiderivative method (see Appendix A)

LTEW = 236 h10

297675

[(
g(x)q(x)

)
G4 + · · ·

]
+ O

(
h12

)
(43)

5.8 An eighth algebraic order multiderivative method with vanished phase-lag and
its first derivative (method (9) with coefficients given by (14))

LTEM I = − 614 h10

38102400

[(
2

(
d

dx
g (x)

)
d

dx
q (x) + 13

(
d2

dx2 g (x)

)
q (x)

+ (g (x))2 q (x)

)
G3 + · · ·

]
+ O

(
h12

)
(44)

5.9 An eighth algebraic order multiderivative method with vanished phase-lag and
its first and second derivatives (method (9) with coefficients given by (22))

LTEN M I I = − 614 h10

38102400

[(
4

(
d2

dx2 g (x)

)
q (x)

)
G3 + · · ·

]
+ O

(
h12

)
(45)

5.10 An eighth algebraic order multiderivative method with vanished phase-lag and
its first, second and third derivatives (method (9) with coefficients given by
(31))

LTEN M I I I = − 614 h10

38102400

[(
12

(
d

dx
g (x)

)2

q (x) + 28

(
d4

dx4 g (x)

)
q (x)

+8

(
d3

dx3 g (x)

)
d

dx
q (x) + 16 g (x) q (x)

d2

dx2 g (x)

)
G2 + · · ·

]

+O
(

h12
)

(46)

From the above equations, we have the following theorem:
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Theorem 2 For the classical explicit high algebraic order multiderivative four-step
method the error increases as the fifth power of G. For the implicit P-stable multide-
rivative method (presented in the Appendix), the error increases as the fourth power
of G. For the explicit high algebraic order multiderivative four-step method with van-
ished phase-lag and its first derivative (method (9) with coefficients given by (14)), the
error increases as the third power of G. For the explicit high algebraic order multide-
rivative four-step method with vanished phase-lag and its first and second derivatives
(method (9) with coefficients given by (22)), the error increases as the third power
of G. Finally, for the explicit high algebraic order multiderivative four-step method
with vanished phase-lag and its first, second and third derivatives (method (9) with
coefficients given by (31)), the error increases as the second power of G. So, for the
numerical solution of the time independent radial Schrödinger equation the explicit
high algebraic order multiderivative four-step method with vanished phase-lag and
its first, second and third derivatives (method (9) with coefficients given by (31)) is
much more efficient, especially for large values of |G| = |Vc − E |.

6 Stability analysis

Application of the new obtained methods to the scalar test equation:

q ′′ = −z2 q, (47)

leads to the following difference equation:

A2 (v, s) (qn+2 + qn−2) + A1 (v, s) (qn+1 + qn−1) + A0 (v, s) qn = 0 (48)

where

A2 (v, s) = 1, A1 (v, s) = a1 + s2 b1 − s4 c1

A0 (v, s) = a0 + s2 b0 − s4 c0 (49)

where s = z h, z �= ω, T3 = H8 sin (H) + 9 cos (H) H7 − 33 sin (H)

H6 − 48 cos (H) H5 + 3 sin (H) H4v4 + 15 cos (H) H3v4 − 15 sin (H) H2v4 −
v6 sin (H)

H2 − 3 v6 cos (H) H + 45 sin (H) H4v2 − 3 v2 sin (H) H6 − 21 v2 cos (H)

H5 + 3 v6 sin (H) and v = z h.
The corresponding characteristic equation is given by:

A2 (v, s)
(
λ4 + 1

)
+ A1 (v, s)

(
λ3 + λ

)
+ A0 (v, s) λ2 = 0 (50)

Definition 1 (see [18]) A symmetric 2k-step method with the characteristic equation
given by (7) is said to have an interval of periodicity

(
0, s2

0

)
if, for all s ∈ (

0, s2
0

)
, the

roots λi , i = 1, 2, . . . satisfy
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Fig. 4 s–v plane of the Implicit P-stable Multiderivative Method produced based on the procedure of Wang
[88] (see Appendix A)

λ1,2 = e±i ζ(v), |λi | ≤ 1, i = 3, 4, . . . (51)

where ζ(s) is a real function of z h and s = z h.

Definition 2 (see [18]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 3 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. v = s.

In Figs. 4, 5, 6 and 7 we present the s–v plane for the methods developed in this
paper. A shadowed area denotes the s–v region where the methods are stable, while a
white area denotes the region where the method is unstable.

Remark 1 For the solution of the Schrödinger equation the frequency of the phase
fitting is equal to the frequency of the scalar test equation. So, it is necessary to observe
the surroundings of the first diagonal of the s–v plane.

Based on the analysis presented above and on the Remark 1, we studied the interval
of periodicity of the following methods:

1 where S is a set of distinct points.

123



J Math Chem (2013) 51:194–226 217

Fig. 5 s–v plane of the new developed family of methods (First Method of the Family)

Fig. 6 s–v plane of the new developed family of methods (Second Method of the Family)

– The Classical Eighth Algebraic Order Multiderivative Method (i.e. the method (9)
with constant coefficients) (indicated as CL)

– The Implicit P-stable Multiderivative Method produced based on the procedure
of Wang [88] (see Appendix A) (indicated as W)

– The Eighth Algebraic Order Multiderivative Method with Vanished Phase-Lag
and its First Derivative (method (9) with coefficients given by (14)) (indicated as
NMI)
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Table 1 Comparative stability analysis for the methods mentioned in the Sect. 5

Method Interval of periodicity

CL (0, 2.447172260)

W (see Appendix A) (0, ∞)

NMI (method (9) with coefficients given by (14)) (0, 39.47841760)

NMII (method (9) with coefficients given by (14)) (0, 39.47841760)

NMIII (method (9) with coefficients given by (14)) (0, 39.47838891)

Fig. 7 s–v plane of the new developed family of methods (Third Method of the Family)

– The Eighth Algebraic Order Multiderivative Method with Vanished Phase-Lag
and its First and Second Derivatives (method (9) with coefficients given by (22))
(indicated as NMII)

– The Eighth Algebraic Order Multiderivative Method with Vanished Phase-Lag
and its First, Second and Third Derivatives (method (9) with coefficients given by
(31)) (indicated as NMIII)

More specifically, we investigate the case that the frequency of the scalar test equa-
tion is equal with the frequency of phase fitting, i.e. the case that v = s (i.e. see the
surroundings of the first diagonal of the s − v plane)

The results presented in the Table 1.
From the above analysis we have the following theorem:
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Theorem 3 For the methods developed in this paper we have the following charac-
teristics:

– The Classical Eighth Algebraic Order Multiderivative Method (i.e. the method
(9) with constant coefficients) (indicated as CL): Algebraic Order: 8, Interval of
periodicity equal to: (0, 2.447172260)

– The Implicit P-stable Multiderivative Method produced based on the procedure
of Wang [88] (see Appendix A) (indicated as W): Algebraic Order: 8, Interval of
periodicity equal to: (0,∞)

– The Eighth Algebraic Order Multiderivative Method with Vanished Phase-Lag
and its First Derivative (method (9) with coefficients given by (14)) (indicated as
NMI): Algebraic Order: 8, Phase-Lag Order: ∞. First Derivative of Phase-Lag
Order: ∞. Interval of periodicity equal to: (0, 39.47841760)

– The Eighth Algebraic Order Multiderivative Method with Vanished Phase-Lag
and its First and Second Derivatives (method (9) with coefficients given by (22))
(indicated as NMII): Algebraic Order: 8, Phase-Lag Order: ∞. First Derivative
of Phase-Lag Order: ∞. Second Derivative of Phase-Lag Order: ∞. Interval of
periodicity equal to: (0, 39.47841760)

– The Eighth Algebraic Order Multiderivative Method with Vanished Phase-Lag and
its First, Second and Third Derivatives (method (9) with coefficients given by (31))
(indicated as NMIII): Algebraic Order: 8, Phase-Lag Order: ∞. First Derivative
of Phase-Lag Order: ∞. Second Derivative of Phase-Lag Order: ∞. Third Deriv-
ative of Phase-Lag Order: ∞. Interval of periodicity equal to: (0, 39.47838891)

7 Conclusions

In this paper we developed and investigated three methods of a family of eighth alge-
braic order multiderivative explicit four-step methods. The constructed methods

– have the phase-lag vanished
– have the derivative of the phase-lag (first, first and second or first, second and third

respectively) vanished as well

For the above mentioned methods we have presented their development and we
have studied their error and stability. From the theoretical error analysis produced the
result that the new obtained eighth algebraic order multiderivative explicit four-step
method with phase-lag vanished and its first, second and third derivatives vanished
as well, is the most accurate one for the numerical solution of the radial Schrödinger
equation especially for large values of energy.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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Appendix

An implicit P-stable multiderivative method developed using the procedure of
Wang [88]

Consider the following family of multiderivative eighth algebraic order implicit four-
step methods:

qn+2 + a0 qn + qn−2 = h2
[

b2 ( fn+2 + fn−2) + b0 fn

]

+h4
[

c2 (gn+2 + gn−2) + c0 gn

]
(52)

In the above general form :

– the coefficient b0, b2, c0, c2, a0 and a1 are free parameters,
– h is the step size of the integration,
– n is the number of steps,
– qn±i is the approximation of the solution on the point xn±i , i = 0(1)2
– fn±i = q ′′ (xn±i ) , i = 0(1)2
– gn±i = q(4) (xn±i ) , i = 0(1)2
– xi = x0 + i h and
– x0 is the initial value point.

Considering that:

a1 = −2, b2 = 2 − 1

2
b0

c0 = −244

45
+ 5

3
b0, c2 = −28

45
+ 1

6
b0 (53)

and applying the method (52) to the scalar test equation (5) we have the difference
equation (6) and the corresponding characteristic equation (7) with m = 2 and A j (v) ,

j = 0(1)2 given by:

A2 (v) = 1 + v2
(

2 − 1

2
b0

)
− v4

(
−28

45
+ 1

6
b0

)

A1 (v) = 0

A0 (v) = −2 + v2b0 − v4
(

−244

45
+ 5

3
b0

)
(54)

where v = ω h
Demanding now the roots of the corresponding characteristic equation (7) to be

equal to:

λ1,2 = e± I v, λ3,4 = −e± I v (55)

123



J Math Chem (2013) 51:194–226 221

Fig. 8 Behavior of the
coefficient of the proposed
method given by (56) for several
values of v = ω h

the following coefficient b0 is obtained:

b0 = 2

15

T18

D18
(56)

where:

T18 = 28 cos (2 v) v4 + 90 cos (2 v) v2 + 45 cos (2 v) + 122 v4 − 45

D18 =
(
−3 + 3 cos (2 v) + 5 v2 + cos (2 v) v2

)
v2

For some values of |ω| the formulae given by (56) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

b0 = 230

63
− 118

19845
v2 − 932

2750517
v4 − 902074

56316835575
v6

− 446716

709592128245
v8 − 4041821516

208992621571358625
v10

− 1275859208

3848679508014096525
v12

+ 10638430144046

1024422268045652142541875
v14

+ 4673935681923764

3265653306075929899994989125
v16

+ 473590881027129748

5143403957069589592492107871875
v18 + · · · (57)

The behavior of the above obtained coefficient is given in the Fig. 8.

123



222 J Math Chem (2013) 51:194–226

The local truncation error of the new proposed method (mentioned as N M I ) is
given by:

LTEW = 236 h10

297675

(
q(10)

n + ω2q(8)
n

)
+ O

(
h12

)
(58)
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